ㄨ
Conclusion of singly loaded resonator: use phase of S11 to fit Qe
In[2]:= 3.55/(3.868 - 3.242)
Out[2]= 5.67093
In[4]:= 2*3.55/(4.222 - 2.97)
Out[4]= 5.67093
a = 3.075*10^9;
Z0 = 465;
w1 = 2*\[Pi]*3.3*10^9;
w2 = 2*\[Pi]*3.8*10^9;
w0 = Sqrt[w1*w2];
f0 = w0/(2*\[Pi]);
b = f0^2/a
L = Z0/w0*\[Pi]/2;
M = (b^2 - a^2)/(b^2 + a^2)
K = w0*L*M
4.07805*10^9
0.275045
200.899
w1 = 2*\[Pi]*3.3*10^9;
w2 = 2*\[Pi]*3.8*10^9;
w0 = Sqrt[w1*w2];
f0 = w0/(2*\[Pi]);
f[x_] := Z0*\[Pi]/2*((f0^2/x)^2 - x^2)/((f0^2/x)^2 + x^2);
g[x_] := Z0*\[Pi]/2*(x^2 - (f0^2/x)^2)/(x^2 + (f0^2/x)^2);
Plot[{f[x], g[x]}, {x, 0, 2.5*f0}, AxesLabel -> {"fp1&2", "K"},
AspectRatio -> 1, PlotStyle -> {Red, Blue}, PlotRange -> {0, 900}]
plot1 = ParametricPlot[{f[x], x}, {x, 0.001, f0}, AspectRatio -> 1,
PlotStyle -> Red];
plot2 = ParametricPlot[{g[x], x}, {x, f0, 2.5*f0}, AspectRatio -> 1,
PlotStyle -> Blue];
Show[plot1, plot2, AxesLabel -> {"K", "fp1&2"},
PlotRange -> {0, 8*10^9}]
Comments